On a Series Representation for Carleman Orthogonal Polynomials
نویسندگان
چکیده
Let {pn(z)}n=0 be a sequence of complex polynomials (pn of degree n) that are orthonormal with respect to the area measure over the interior domain of an analytic Jordan curve. We prove that each pn of sufficiently large degree has a primitive that can be expanded in a series of functions recursively generated by a couple of integral transforms whose kernels are defined in terms of the degree n and the interior and exterior conformal maps associated with the curve. In particular, this series representation unifies and provides a new proof for two important known results: the classical theorem by Carleman establishing the strong asymptotic behavior of the polynomials pn in the exterior of the curve, and an integral representation that has played a key role in determining their behavior in the interior of the curve.
منابع مشابه
Solving singular integral equations by using orthogonal polynomials
In this paper, a special technique is studied by using the orthogonal Chebyshev polynomials to get approximate solutions for singular and hyper-singular integral equations of the first kind. A singular integral equation is converted to a system of algebraic equations based on using special properties of Chebyshev series. The error bounds are also stated for the regular part of approximate solut...
متن کاملAn Asymptotic Integral Representation for Carleman Orthogonal Polynomials
Abstract. In this paper we investigate the asymptotic behavior of polynomials that are orthonormal over the interior domain of an analytic Jordan curve L with respect to area measure. We prove that, inside L, these polynomials behave asymptotically like a sequence of certain integrals involving the canonical conformal map of the exterior of L onto the exterior of the unit circle and certain mer...
متن کاملRecurrences and explicit formulae for the expansion and connection coefficients in series of the product of two classical discrete orthogonal polynomials
Suppose that for an arbitrary function $f(x,y)$ of two discrete variables, we have the formal expansions. [f(x,y)=sumlimits_{m,n=0}^{infty }a_{m,n},P_{m}(x)P_{n}(y),] $$ x^{m}P_{j}(x)=sumlimits_{n=0}^{2m}a_{m,,n}(j)P_{j+m-n}(x),$$ we find the coefficients $b_{i,j}^{(p,q,ell ,,r)}$ in the expansion $$ x^{ell }y^{r},nabla _{x}^{p}nabla _{y}^{q},f(x,y)=x^{ell }y^{r}f^{(p,q)}(x,y) =sumli...
متن کاملConvergence of Padé approximants of Stieltjes-type meromorphic functions and the relative asymptotics of orthogonal polynomials on the real line
We obtain results on the convergence of Padé approximants of Stieltjes-type meromorphic functions and the relative asymptotics of orthogonal polynomials on unbounded intervals. These theorems extend some results given by Guillermo López in this direction substituting the Carleman condition in his theorems by the determination of the corresponding moment problem. c © 2009 Elsevier Inc. All right...
متن کاملBuckling and vibration analysis of angle -ply symmetric laminated composite plates with fully elastic boundaries
The main focus of this paper is on efficiency analysis of two kinds of approximating functions (characteristic orthogonal polynomials and characteristic beam functions) that have been applied in the Rayleigh-Ritz method to determine the non-dimensional buckling and frequency parameters of an angle ply symmetric laminated composite plate with fully elastic boundaries. It has been observed that o...
متن کامل